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bstract

This paper reports a nonlinear modeling study of a solid oxide fuel cell (SOFC) stack using a least squares support vector machine (LS-SVM).
OFC is a nonlinear, multi-input and multi-output system that is hard to model by traditional methodologies. So far, most of the existing models
re based on conversion laws, which are very useful for cell design. However, they are too complicated to be applied to control system design.
o facilitate a valid control strategy design, this paper tries to avoid the internal complexities and presents a black-box model of the SOFC based
n LS-SVM. The simulation tests reveal that it is feasible to establish the model using LS-SVM. At the same time, the experimental comparisons

etween the LS-SVM model and radial basis function neural network (RBFNN) model demonstrate that the LS-SVM is superior to the conventional
BFNN in predicting stack voltage with different fuel utilizations. Furthermore, based on this black-box LS-SVM model, valid control strategy

tudies such as predictive control, robust control can be developed.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The solid oxide fuel cell (SOFC) is an energy conversion
evice that produces electricity by electrochemically combin-
ng fuel (e.g. hydrogen) with oxidant (e.g. oxygen) gases across
n ionic conducting oxide [1]. SOFC provides many advantages
ver traditional energy conversion systems including high effi-
iency, modularity, fuel adaptability and very low levels of NOx

mission. An important tool in fuel cell development is mathe-
atical modeling, which is particularly appropriate for SOFCs,
here localized experimental measurements are difficult due to

he high operating temperature [2]. The results obtained from a
eliable and effective model can be very useful to guide future
esearch for fuel cell improvements and optimization.

It is well known that the SOFC system is sealed, and works
n a complicated high-temperature (600–1000 ◦C) environment.

s a nonlinear multi-input and multi-output system, SOFC is
ard to model using traditional methodologies. In the last sev-
ral decades, fruitful results from SOFC stack modeling have
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een obtained [3–5]. However, most of the existing models that
ave been developed emphasized the detailed description of cell
nternal processes, such as mass balances, energy balances and
lectrochemical kinetics. These models are very useful for cell
esign, but they are too complicated to be used for a control
ystem design.

To meet the demands of developing valid control strategies,
ome researchers have attempted to establish novel SOFC mod-
ls. A black-box identification technique such as the artificial
eural network (ANN) has been used to derive a SOFC model
rom the experimental data quickly [6]. Although this ANN
odel shows a high accuracy and is much faster and easier to

se, its practical design suffers from drawbacks such as the exis-
ence of local minima and over-fitting, choice of the number of
idden units, etc. So a new modeling approach is needed to pro-
ide a better solution. In this work, a least squares support vector
achine (LS-SVM) is presented to establish a black-box model

or the SOFC.
LS-SVM proposed by Suykens and Vandewalle [7] is a mod-
fication of the standard SVM. Unlike ANN, LS-SVM possesses
rominent advantages: over-fitting is unlikely to occur by adopt-
ng the structural risk minimization (SRM) principle, and the
lobal optimal solution can be uniquely obtained by solving a

mailto:huohb1028@sjtu.edu.cn
dx.doi.org/10.1016/j.jpowsour.2006.07.031
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Nomenclature

b bias term
e predictive error
f(·) nonlinear function
I stack current
K(x, xi) kernel function
m lag of the fuel utilization
n lag of the output voltage
N0 number of cells in the stack
P stack dc output power
qH2 input hydrogen flow rate
qO2 input oxygen flow rate
T stack operating temperature
u fuel utilization
V stack output voltage
V̂ predictive output voltage
w weight vector
xi ith original training datum
xmax maximum of the training data
xmin minimum of the training data
x′ normalized result

Greek letters
αi Lagrange multipliers
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γ regularization parameter
σ kernel width

et of linear equations. A number of structures and algorithms for
odeling using LS-SVM have been proposed [8–10]. However,

he concrete study of modeling SOFC with LS-SVM cannot be
ound in prior papers.

This paper is organized as follows. In Section 2, a brief analy-
is of the characteristics of a SOFC stack is presented. In Section
, LS-SVM for nonlinear system modeling is explained. In Sec-
ion 4, Identification structure of a SOFC stack and the detailed
rocesses of training and testing the LS-SVM model are given.
n Section 5, conclusions and suggestions for future work are
ummarized.

. Description and analysis of SOFC stack

A brief description and analysis of the SOFC stack is given
n this section. The reason for establishing a cell voltage–fuel
tilization model under different cell currents is also explained.

A SOFC consists of an interconnected structure and a
hree-layer region composed of two ceramic electrodes, anode
nd cathode, separated by a dense ceramic electrolyte (often
eferred to as the PEN, Positive-electrode/Electrolyte/Negative-
lectrode). In this cell, the oxygen ions formed at the cathode
igrate through the ion-conducting solid ceramic electrolyte to
he anode/electrolyte interface where they react with the hydro-
en and carbon monoxide contained in (and/or produced by)
he fuel, producing water and carbon dioxide while liberating
lectrons that flow back to the cathode/electrolyte interface via

ψ

t
f
s

Fig. 1. Single cell and stack of SOFC.

n external circuit [11]. The typical hydrogen fed cross-flow
onfiguration of a SOFC is shown in Fig. 1 [12].

A single cell produces an open-circuit voltage of approx-
mately 1 V. Cells have to be connected together in a series
rrangement to form a cell stack that delivers the higher voltages
uited to static converters [13].

As we know, cell voltage calculation is the core of any fuel
ell modeling. For a given SOFC stack, the output voltage is
nfluenced by many operating parameters such as temperature,
ressure, fuel utilization, flow rate, etc. However, due to the
igh number of operating variables, a complete experimental
atabase of SOFC under the different operating conditions is
ifficult to obtain and no data are available in the open litera-
ure yet [14]. Up to now, almost no model has ever been able to
ccommodate all these operating variables. Our LS-SVM model
s no exception. Fuel utilization is one of the most important
perating parameters for a fuel cell and has significant effects
n the cell voltage. In order to analyze the effects of different
uel utilizations on output voltage, we chose current, which is
etermined by the external load, and fuel utilization as variables,
hile holding other operating parameters constant. Based on the
S-SVM approach, we present a voltage–fuel utilization model
nder different currents in this paper. Furthermore, like the stan-
ard SVM, LS-SVM also has better generalization performance
nd this ability is independent of the dimensionality of the input
ata. So our LS-SVM model, obtained with the two variables,
an predict stack voltage as precisely as a model considering
ore variables. Besides, by adding more variables to our LS-
VM model and training it again, the new multi-dimensional
odel can be obtained easily.

. LS-SVM for nonlinear system modeling

In the following, we briefly introduce LS-SVM algorithm for
onlinear system modeling, based on [7,15].

Assume a set of training data is given:

x1, y1), . . . , (xN, yN ) ∈Rn × R (1)

he nonlinear function ψ(·) is employed to map the orig-
nal input space Rn to high dimensional feature space

(x) = (ϕ(x1),ϕ(x2), . . .,ϕ(xN)). Then the linear decision func-

ion y(xi) = wTϕ(xi) + b is constructed in this high dimensional
eature space. Thus nonlinear function estimation in original
pace becomes linear function estimation in feature space.
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The quadratic loss function is selected in LS-SVM. Then the
ptimization problem of LS-SVM is formulated as:

min
,b,e
J(w, e) = 1

2
wTw+ γ

1

2

N∑
i=1

e2
i , γ > 0 (2)

ubject to the equality constraints

i = wTϕ(xi) + b+ ei, i = 1, . . . , N (3)

e construct the Lagrangian as

(w, b, e, α) = J(w, e) −
N∑
i=1

αi{wTϕ(xi) + b+ ei − yi} (4)

here αi (i = 1, . . ., N) are the Lagrange multipliers. The condi-
ions for optimality are given by

∂L

∂w
= 0 → w =

N∑
i=1

αiϕ(xi),
∂L

∂b
= 0 →

N∑
i=1

αi = 0,

∂L

∂ei
= 0 → αi = γei, i = 1, . . . , N,

∂L

∂αi
= 0 → yi = wTϕ(xi) + b+ ei, i = 1, . . . , N (5)

ith solution⎡
⎢⎢⎢⎢⎣

0 1 · · · 1

1 K(x1, x1) + 1/γ · · · K(x1, xN )
...

...
. . .

...

1 K(xN, x1) · · · K(xN, xN ) + 1/γ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b

α1

...

αN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0

y1

...

yN

⎤
⎥⎥⎥⎥⎦ (6)

he resulting LS-SVM model for nonlinear system becomes

(x) =
N∑
i=1

αiK(x, xi) + b (7)

here αi, b are the solution to the linear system. Using the nor-
al linear equations program method, we can get the parameters

i of (6). By the Karush–Kuhn–Tucker (KKT) conditions, the
arameter b can be calculated, so the LS-SVM model for non-
inear system can be obtained.

The kernel function K(x, xi) is any symmetric function that
atisfies Mercer’s condition. The typical examples of kernel
unction include linear, polynomial, radial basis function (RBF)
ernel.

inear : K(x1, x2) = xT
1x2 (8)
olynomial : K(x1, x2) = (xT
1x2 + 1)

p
, p∈N (9)

BF : K(x1, x2) = exp

(−||x1 − x2||2
2σ2

)
(10)

4

i

ources 162 (2006) 1220–1225

The selection of kernel function needs some knowledge in
dvance, there is no common conclusion currently. In this paper,
he RBF function is used as the kernel function of LS-SVM
ecause RBF kernels tend to give good performance under gen-
ral smoothness assumptions.

. Modeling SOFC based on LS-SVM

A LS-SVM can be regarded as a black-box which can pro-
uce certain output data as a response to the specific input data.
n this modeling procedure, the relationship between input and
utput of SOFC can be emphasized while the sophisticated inner
tructure is ignored. In order to establish the expected nonlinear
odel of SOFC, we choose fuel utilization and cell current as

he model inputs, and cell voltage as the output. In the follow-
ng, identification structure of SOFC stack based on LS-SVM is
iven firstly, and then the processes of training and testing the
S-SVM model are presented.

.1. Identification structure of SOFC stack based on
S-SVM

In general, a wide class of nonlinear systems can be
escribed by nonlinear autoregressive model with exogenous
nputs (NARX). So in this paper the SOFC nonlinear system
ith two inputs and one output can be described as follows:

V (k + 1) = f [V (k), V (k − 1), . . . ,

V (k − n), u(k), u(k − 1), . . . , u(k −m), I(k)] (11)

upposing there is a series of inputs u(k − m), u(k − m
1), . . ., u(k), I(k) and outputs V(k − n), V(k − n + 1), . . ., V(k),

hen the corresponding output V(k + 1) can be obtained from
11). And providing that

X(k) = (V (k), V (k − 1), . . . , V (k − n), u(k),

u(k − 1), . . . , u(k −m), I(k)), k = 1, 2, . . . , N (12)

hen

(k + 1) = f (X(k)) (13)

e firstly construct the training sample set (X(k), V(k + 1)), and
hen the nonlinear sample data can be mapped as the linear out-
uts in high dimensional feature space by using LS-SVM.

Namely

ˆ (k + 1) =
N∑
i=1

αiK(X(k), X(i)) + b (14)

The identification structure of SOFC stack based on LS-SVM
s shown in Fig. 2, where TDL is the tapped delay line, and the
redictive error e(k + 1) = V (k + 1) − V̂ (k + 1).
.2. Training process of LS-SVM

In general, steps used in training LS-SVM include: train-
ng data choosing and preprocessing, selection of the optimal
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Table 1
Parameters of the SOFC stack used in the LS-SVM modeling

Item Value

N0 384
T 1273 K
P 100 kW
I 100–300 A
V Variable
u 0.4–0.9
q

q

a

x

4

r
o
b

(

(

m

Fig. 2. Identification structure of SOFC stack based on LS-SVM.

S-SVM parameters, testing data choosing and preprocess-
ng.

.2.1. Training data choosing and preprocessing
In our study, a mathematical model in [16] is used to generate

he data required for the training of the LS-SVM model. The
athematical model has been developed to research the steady-

tate feasible operating regime of the SOFC. Here three groups
f fuel utilization and cell voltage data at 100, 200, and 300 A
re chosen as training data, and each group has 101 pairs of data.
ain operational parameters of SOFC are varied, such as fuel

tilization (0.4–0.9), stack current (100–300 A) and voltage in
anges that correspond to the fuel utilization and stack current
s shown in Fig. 3. Some parameters of the SOFC stack used in
he LS-SVM modeling are shown in Table 1.

In most cases, all given training data are normalized to [0, 1]

r [−1, 1] in order to increase the training speed, facilitate mod-
ling and predicting. In this paper, we normalize each group of
raining data, including fuel utilization, stack current and volt-

ig. 3. Training data: stack voltage (V) vs. fuel utilization (u) at 100, 200 and
00 A.
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H2 1.2e−3 kmol/s

O2 2.4e−3 kmol/s

ge, to [0, 1] by

′ = xi − xmin

xmax − xmin
(15)

.2.2. Selection of the optimal LS-SVM parameter
The precision and convergence of LS-SVM are affected by

egularization parameter γ and kernel width σ. So in order to
btain high level SOFC model, γ and σ in the LS-SVM have to
e tuned.

1) γ , which determines the trade-off between minimizing train-
ing errors and minimizing model complexity, is important to
increase the generalization performance of LS-SVM model.

2) σ influences directly the number of initial eigenval-
ues/eigenvectors. Small values of σ yield a large number
of regressors, and eventually it can lead to over-fitting. On
the contrary, a large value of σ can lead to a reduced num-
ber of regressors, making the model more parsimonious, but
eventually not so accurate [17].

Several researchers have presented some methods for deter-
ining these two parameters, such as bootstrapping, Bayesian
ethods and so on. However, most of the available methods can

e very expensive in terms of computation time and/or training
ata. For the industrial application of LS-SVM, there is a need
or a fast and robust method to estimate these two parameters.
ortunately, we can rapidly tune these two parameters with a 10-
old cross-validation procedure and a grid search mechanism by
S-SVM toolbox [18]. In the final optimal LS-SVM parameters
re: γ = 419.0603, σ = 0.4080358.

.2.3. Testing data choosing and preprocessing
Testing data should be different from the data used for train-

ng. If testing data are identical to training data, then the LS-SVM
s just interpolating points on a line—which is not what we
xpect the LS-SVM to do [19]. In our study, the testing data
hosen for this work are also provided by the above-mentioned
athematical model in [16]. A group of fuel utilization and stack

oltage data at 280 A are chosen as testing data. Preprocessing
f testing data is done in the same way as training data.
.3. Predicting with the LS-SVM model

The criterion of training LS-SVM is to minimize sum squared
rror (SSE). After training, a LS-SVM model is obtained, which
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Fig. 4. Voltage–fuel utilization characteristics: predicted by LS-SVM model and
experimental at 280 A.
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ig. 5. Voltage–fuel utilization characteristics: predicted by RBFNN model and
xperimental at 280 A.

an be used to predict new input data. Now the trained LS-SVM
odel is used to predict stack voltage at 280 A with different

uel utilizations. The comparison of predicted and experimental
oltage–fuel utilization curve at 280 A is then made to evaluate
he LS-SVM model’s prediction precision (as shown in Fig. 4).
t the same time, RBFNN model is also used to predict the stack
oltage at 280 A, and the predicted result is shown in Fig. 5.
rom Figs. 4 and 5, we can see the LS-SVM is superior to the
onventional RBFNN in predicting stack voltage with different
uel utilizations. These indicate LS-SVM is a powerful tool for
odeling SOFC and our LS-SVM model presented in this paper

s accurate and valid.

. Conclusions
To facilitate valid control strategy design, a nonlinear model-
ng study of SOFC using LS-SVM is reported in this paper. It is
hown that the LS-SVM model is more attractive in that it avoids
sing complicated differential equations to describe the stack,

[

[

ources 162 (2006) 1220–1225

nd the input–output characteristics can be achieved quickly by
S-SVM estimation. Besides, the performance of our proposed
S-SVM modeling approach has been tested and compared with

he RBFNN approach, and simulation results show that the LS-
VM approach yields higher prediction accuracy compared to

he RBFNN approach. These indicate that it is feasible to estab-
ish the model of the SOFC by using LS-SVM, and the LS-SVM

odel presented in this paper is accurate and valid.
In the future, based on this black-box LS-SVM model, some

ontrol scheme studies such as predictive control and robust con-
rol can be developed. In addition, because better generalization
erformance of LS-SVM is independent of the dimensionality of
he input data, a multi-dimensional LS-SVM model considering
ther operating parameters can be obtained easily.
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